UPMC LIFE CHANGING MEDICINE

Pulmonary Embolism Risk Stratification

via ECG-based Machine Learning

Tanmay Gokhale MD PhD, Nathan Riek, Brent Medoff MD, Zeineb Bouzid PhD, Ervin Sejdic PhD, Murat Akcakaya PhD, Samir Saba MD, Salah Al-Zaiti RN PhD, Catalin Toma MD

Introduction

Results

risk

Random Forest Model Performance

The Random Forest ML model achieved an AUROC of 0.80, compared to 0.66 for S1Q3T3 and 0.69 for the Daniel score, on a hold-out test set. At the selected operating point, the model had an accuracy of 71.9%, recall/sensitivity of 88.1%, precision/PPV of 70.2% and specificity of 50.6%

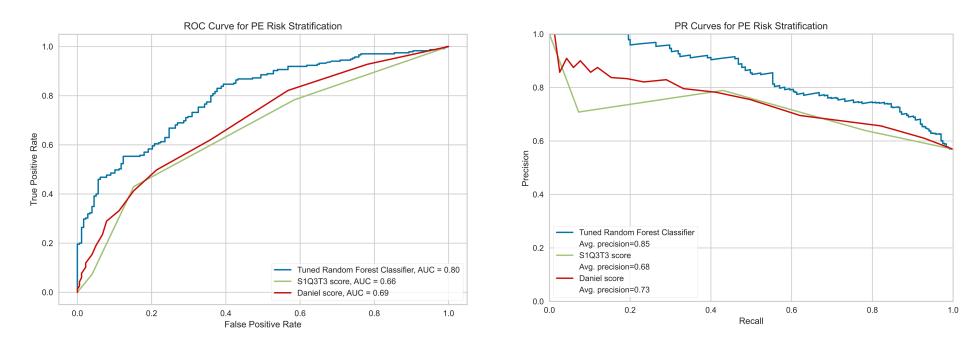
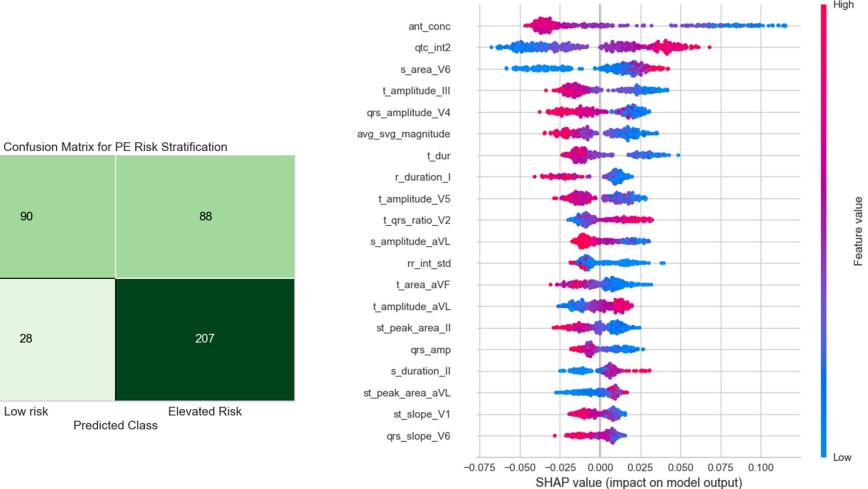



Figure 1: The EKG-based random forest model outperformed the S1Q3T3 and Daniel scores in identifying elevated risk PE, with higher AUROC and AUPRC

Pulmonary embolism (PE) carries significant risk of morbidity and mortality

- Clinical algorithms for risk stratification require ٠ imaging and lab studies that can delay identification of highest risk patients
- Therefore, a key challenge is rapidly identifying • those patients with PE who are at highest clinical risk and may warrant consideration of procedural intervention
- In this study, we sought to use the 12-lead ECG to • identify patients at elevated risk.

Methods

- This was a retrospective study of patients who were diagnosed with PE and seen by the PE Response Team (PERT) at UPMC Presbyterian. Only PEs within 1 day of admission, or OSH transfer for PE were included
- PEs were clinically classified as massive, sub-• massive, or low risk by the PERT consultant (pulmonary attending/fellow)

	Low Risk PE	Elevated Risk
	(n = 617)	PE (n = 759)
Demographics		
Age, years (mean (SD))	57 (18)	62 (16)
Women	46.4%	52.3%
Medical History		
van Walraven score	2 (5)	2 (5)
Coronary artery disease	10.2%	9.0%
Diabetes mellitus	14.8%	14.9%
Hypertension	38.4%	41.2%
Heart failure	5.8%	4.5%
Atrial fibrillation	3.6%	5.5%
Asthma	22.9%	21.4%
Obstructive lung disease	6.6%	8.0%
Chronic kidney disease	4.5%	5.1%
Obesity	14.9%	18.6%
Current/recent tobacco use	20.1%	13.7%
Clinical Course		
ICU stay*	31.8%	77.7%

* Includes patients in the ICU at time of PE diagnosis

- An ECG within 1 day of diagnosis was retrieved • and analyzed using a curated set of ECG spatiotemporal features
- Data split into 70% training and 30% test set
- Collinearity removal & multi-step feature selection performed
- A random forest model was trained on the training • set, using 5-fold cross validation for model tuning and threshold moving
- The resulting model was validated on the hold-out test set

Acknowledgments

This work was supported by 5T32HL129964 and a HVI Cardiology Fellow Research Grant to TG and by 5R01HL137761 to SSA. Authors have no relevant conflicts of interests

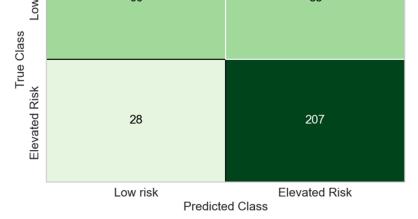


Figure 2: Confusion matrix for random forest predictor of elevated risk PE

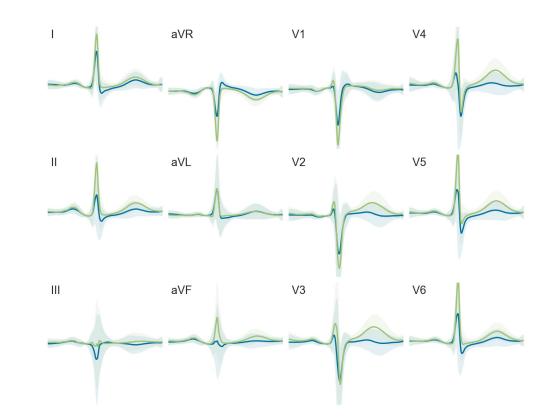
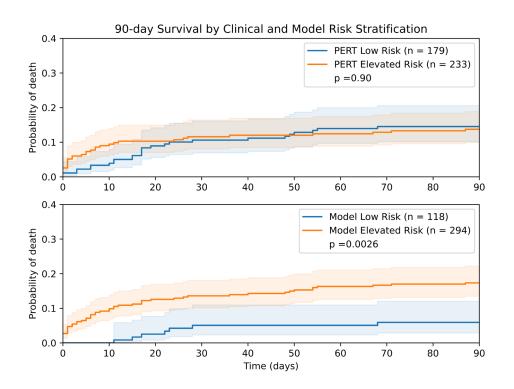


Figure 4: Average EKG waveforms of patients with predicted low — and elevated — risk

Figure 5: Model prediction of PE risk predicts 90 day all-cause mortality


Conclusions

- Machine learning based models can accurately risk stratify patients with pulmonary embolism based on EKG alone
- These models could help more effectively deliver care in the emergency department setting
- Model prediction of risk correlates with 90-day survival following pulmonary embolism

Figure 3: Known and novel EKG features played key roles in model performance

University of

Pittsburgh

